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Boundary conditions are formulated for differential equations describing two-dimensional motion of gas and 

polydisperse coke and ash particles in a high-concentration flow [1, 2]. Specific features of the aerodynamics 

of the pneumatic transport zone in the freeboard zone was investigated numerically in a circulating fluidized 

bed reactor. The model constructed is verified by experimental data [3]. 

In Parts 1 [1 ] and 2 [2] of the present work a closed system of equations was obtained for axisymmetric 

motion of gas and polydisperse coke and ash particles in the pneumatic transport zone (PTZ) of the freeboard zone 

in a circulating fluidized bed reactor. This system includes equations of transfer of mass (1) and (2), momentum 

(3)-  (5), and kinetic energy of fluctuation motion (7) and (11) of the components (see [1 1). Boundary conditions 

for these equations should be prescribed on the flow axis, on the reactor wall, and in the entrance section. From 

symmetry considerations on the axis we have 

' Or a = -0-7 a = ~ r  a = Or J a Or ] a  

It is evident that on the wall 

~gw = kgw =~iw = 0.  (2) 

Since the wall is assumed to be impermeable to the particles, use will be made of the vanishing of the total 

(convective and diffusion) flow in the radial direction, so that 

(Ofii/Or)w = O. (3)  

In [4 ], to derive the boundary condition on the wall for the equation of the axial motion of the particles, 

two flows of particles in the peripheral zone (to and from the wall) are brought into consideration. The velocities 

of the flows are Uil, vii and ui2, vi2, respectively. These quantities are related by the equation of a single collision 
(1) from [21, from which it follows that 

~i2 = 5il (5 + 2kr)/7 ; ~i2 = k~i l  �9 (4) 

Since the flows considered should be equal to each other, the concentrations in them are inversely proportional to 

the absolute values of the radial velocities, so that the average velocity near the wall is 

-Uiw = (-~i2 - k f i i l ) / ( 1  - kn)" (5) 
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Next, similarly to (5), the quantities 

[(~2 - ~~ (W2 - gaw) - kn (~Ol - ~ow) 0Px - gaw) 1/(1 - kn),  (~ ,  ga = ui, ~i), 

are calculated. They are identified incorrectly with the correlations of the fluctuation components (9o'~p')w. As a 

result, in [4 ], using the analog of Boussinesq hypothesis (8) from [1 ], the following boundary condition is obtained: 

( O'ffi/ Or)w /1-Uiw (vi 2 = )w/Vi,  / t  = / ( / ~ ,  t ' 0 ,  

Naturally, it cannot be recognized as justified. A more rigorous approach involves concepts of the dynamics of 

rarefied gases. Assuming that over the length L (see Eq. (8) in [2 ]) the particle velocity changes but slightly and 

expanding the function -fit(r) in a series, it is found that particles approaching the wall have the velocity 

-dn = -~iw - 0.5L (O-~i/ Or)w (6) 

(it is taken into consideration here that the average projection of L on the r axis is L/2  [2 ]). From Eqs. (4 ) -  (6) 

and expression (8) from [2 ], after simple manipulations, we have 

~iw= 2 4 v ~ f i e ( 1 - k  0 -~r w(7k n - 2 k ~ - 5 )  (7) 

(<6> is the average particle size, fie is the equivalent particle concentration from [2 ], for a monodisperse material 

<6> = 6,/~e =/~p). At k~ -- 1 (smooth surfaces) Eq. (7) should be replaced by (O-ui/Or)w = O. 
The boundary condition for k i can be obtained in a way similar to that used for (7). It should be taken 

into consideration that according to (4), after collision the "normal" component of k i becomes equal to kik2n/3 and 

the "tangential" component, to 2ki(5 + 2~)2/147 (the fluctuations are assumed to be spherically symmetric [2 ]). 

As a result, 

kiw 3-----f2 2 ~ w; f2 - -  kn + (5 + 2kr) 2. (8) 

The values of the unknown functions in the entrance section of  the PTZ (z = 0) are determined from the 

solution of the problem of the motion of the flow in the transition zone. However, this problem will be considered 

later; therefore, here use will be made of the hypothesis of the uniformity of the flow at z = 0. 

The complete system of aerodynamic equations in the PTZ contains three types of equations. Equations 

(2), (3), (7), and (1 i) from [1 ] are parabolic (in view of the fact that the correlations of the fluctuation parameters 

are approximated as was done in (8) from [1 ], and a difference analog of the six-point pattern suggested in [5] 
is used here. Hyperbolic equations (4) and (5) from [1 ] are approximated following an implicit scheme of the first 

order [6 ], and discontinuity equation (1) from [1 ], following an explicit four-point scheme (see also [7 ]). In the 

following, a number of examples of numerical results are presented. 
Figure 1 presents  numerical  values of the averaged longitudinal velocities of gas (solid lines) and 

monodisperse particles c~ -- 500/xm (dot-dash lines) in the channel R = 15 mm in comparison with experimental 

data [3 ]. Curve 1 in Fig, la  is calculated by the present method and curve 2 is calculated neglecting pseudoturbulent 

motion of the particles [2] and without using transfer equation (11) from [1 ] (i.e., the parameters of particle 

fluctuations were determined in a locally homogeneous approximation similarly to [7 ]). It is evident that inclusion 

of pseudoturbulence gives a better description of the experimental data. In Fig. lc points and curves 3 correspond 

to x = 3.6; a certain divergence from the experimnetal data is seen here. It is also noticeable that curve 3 does not 
reflect an important qualitative regularity, namely, the presence of a maximum on the curve Kp(r). However, this 

is not indicative of serious drawbacks of the model: lines 4 show results of similar calculations at x = 6 and here 

the shape of the curve Kp(r) is fully consistent with the experiment. 
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Fig. 1. Cross-sectional distribution of axial velocities of phases in the flow: 

a) x = 1.1; Ugm = 7.96 m/sec;  b) x = 2, Ugm = 8 m/sec;  c) x --- 3.6 and 6, 

Ugm = 7.89 m/sec .  

Figures 2 - 6  illustrate distinct features of the aerodynamics of a coke-ash flow in the stabilized area of a 

PTZ. The radius of the channel is assumed to be R -- 100 mm (a typical scale of laboratory setups), the average 

velocity of gas is  Ugm = 6 m/sec ,  and the total concentration of particles is x = 6. Three  cases were considered: A 

is a monodisperse flow with ash particles c3 l = 300 #m; B is motion of ash particles d l = 300/~m and a coke fraction 

(6] = 150-300  r C is a flow with two fractions of ash (C31 --- 300 Hm and 62 = 180/~m) and coke (dl = 250/~m 

and c32 = 150 btm). The  concentration of coke particles was assumed to be 0.3x. 

In Fig. 2, which shows data for case A, it is clearly seen that the changes in kg (except for the peripheral 

zone, kgw = 0) and kp are opposite to the change in the true concentration of the particles. A maximum at r - 0.92 

R on the curve kg(r) can probably be explained by the effect of dissipation of the turbulent energy due to fluctuation 

slip (see Eq. (11) from [1 ] and Eq. (21) from [2 ]). The  behavior of the curve kp(r) can be ascribed to the fact that 

in accordance with the pseudoturbulence model adopted for a monodisperse material [2 ], the rate of generation of 

fluctuation energy is independent  of fit), while the rate of energy dissipation is proportional to ~pp (see Eq. (11) 

from [1 ] and Eqs. (13) and (14) from [2 ]). One more argument will be given to explain the relation between kp 

and tip. Integration of continuity equation (2) from [1 ] for a stabilized area 
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Fig. 2, Cross-sectional distribution of axial velocities of gas (1) and particles 
(2), kinetic energies of fluctuation motion of the gas (3) and particles (4), and 

concentration and radial velocity (6) of ash in the flow. Vp, m/sec; kg, kp, 
m2/sec2; ~g, Up, m/sec. 

[( )] 1 0 
r Or r f lpVp- DPO~--~-Or = 0  

with boundary conditions (2) and (3) gives 

~p -Vp - DpO tip~Or = O. (9) 

Neglecting the drag force and the correlation fl'pv'p compared to v~ in Eq. (5) from [1 ], with account for Eq. (9) 
we obtain 

- 0 (r + #pkp = 0 ,  

i.e.,/~lpkp = C (C is the integration constant), which is in good agreement with the behavior of curves 4 and 5 (Fig. 
2). Assuming Dp = Vp and using expressions (8) and (22) from [2 ], instead of (9) we can write 

Otip/Or = (/~p)5/2 ~p/C 1 ; C 1 ~ v~- 0 /18 ,  

or upon integration, 

/~p = (/~pa)-2/3-1.5C11 ~ ~pdr 
0 

(10) 
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Fig. 3. Axial velocities of gas (solid lines) and particles of coke 6j (dashed 

lines) and ash di (dot-dash lines): 1) 6j = 300/~m; 2) 225; 3) 223.5; 4) 220; 

6) 150 ~m. ~i, m/sec. 

Formula (10) can easily explain the relation between the functions ~p(r) and/~p(r): in the region of r < 0.92R, 

where the values of 7p are positive, the concentration of particles increases, while on the periphery, where the radial 

velocity is directed toward the axis, it decreases. 
Figure 3 shows the distribution of longitudinal velocities of the phases for case B. Here one can see two 

typical shapes of the relations ~g(r): with a maximum on the flow axis (curves 1 and 2) or on the periphery. It is 

interesting that the velocity profile is restructured basically in a very narrow range of the size of the coke particles 

(cf. curves 2, 3, and 4). To explain these results, the equation of longitudinal motion of gas (3) from [1 ] for the 

axial region (where O-~g/Or = 0) will be written, neglecting small terms, as 

02 @ (11) 
~g ~t - - ~  = Z Fi= + - -  2 Oz ' 

Or i 

where Z means the sum over all fractions of the particles. Since O-~/Oz is always less than zero, in the case where 

the totdl drag force is larger than the absolute value of the pressure gradient, the derivative 02-Ug/Or 2 > 0, and the 

function ug(r) has a minimum on the flow axis. In opposite situations a maximum is observed at the point r = 0. 

Calculations have shown that O~/Oz depends but slightly on the size of the coke particles. Meanwhile, the drag 

force changes quite substantially and its value depends primarily on the three parameters Ug -- uj ,  fl-j, and 62. For 

example, compare curves 2 and 6 in Fig. 3. In the former case, the slip velocity is 1 .5 -2  times larger (depending 

on the particle "species"). This change does not compensate, however, for a decrease in the total concentration of 

particles (Fig. 4) and in 6~, so that ultimately, the drag force turns out to be much smaller at 6j = 225/~m. It is 
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Fig. 4. Concentrat ion profile of the disperse phase for case B (the same 

notation as in Fig. 3). 

Fig. 5. Kinetic energy of fluctuation motion of gas and particles for case B 

(the same notation as in Fig. 3). 
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likely that depending on the relation between Z Fiz and O~/Oz, the system tends to one of two stable states (curves 

1 and 2 or 4 - 6  in Fig. 3). 

Comparison of Figs. 3 and 4 shows that the distributions of the concentration of particles and the velocity 

of gas are generally opposite, i.e., in the zone of higher concentrations the inverse effect of the particles on the gas 

results in a decrease in the axial velocity of the gas. In particular, in case 6 (6j = 150 ktm) a decrease in fli in the 

range of r = ( 0 - 0 . 8 5 ) R  corresponds to an increase in ~g, while in case 2 (6j = 225 / ,m) ,  the region of r < 0.4R is 

characterized by almost constant values of both parameters.  The zone near  the wail, where boundary condition (2) 

has a substantial effect on the distribution of the velocity of the gas, is the only exception. The curves ui(r) in Fig. 

3 are generally similar to the curves ~g(r) and the slip value is lower, the smaller 6j. For coke particles this can be 

explained by a change in the drag force, and for ash particles (remember that 6l = 300 for all cases), by interaction 

between the fractions (see Eq. (4) in [1 ]). Near  the wall, where the velocity of the gas decreases sharply, the 

particles appear ahead of the gas; here the drag force becomes negative and suspension of the particles is caused 

mainly by the action of the Reynolds stresses. 

In Fig. 5 it is seen that while moving in the flow, fine, light particles are involved in more intense random 

motion. This can be explained primarily by the fact that the rate of generation of the energy of fluctuation motion 

of particles i is proportional to m 2 in the interaction of fractions k - i  (see Eqs. (1), (5), and (6) in [2 ]). Moreover, 

the interfi'actional slip velocity, which is larger for case 6, also has a certain effect on the value of ki (see Fig. 3). 

I t  is interesting that as in the case of a monodisperse material (see Fig. 2), the general behavior of the c u r v e s  ki(r) 
is opposite to that of the curves/3i(r), i.e., the arguments given above on the relation between k and ~ are also 

valid to a certain extent  for a polydisperse composition of the particles. 

In Fig. 6a it is clearly seen that the velocities of the fractions stratify in accordance with the size and density 

of the particles. Interaction of the fractions results in substantial leveling of the concentration profiles (Fig. 6b). It 

should be noted that there is one more important distinctive feature in this case: in a substantial part of the cross 

section (r < 0.97R), the fluctuation energy of fine coke particles exceeds the energy of gas fluctuations by several 
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Fig. 6. Parameters of a two-phase polydisperse flow for case C: a) axial 

velocities of phases; b) concentration of particles; c) energy of fluctuation 

motion; 1) fine particles; 2) large particles (the remaining notation is the 

same as in Fig. 3). ki ,  m2/sec 2. 

times (cf. Figs. 2 and 5). This indicates that pseudoturbulent transfer prevails in the aerodynamics of high- 

concentration polydisperse flows. 

N O T A T I O N  

z, r, longitudinal and radial coordinates; u, v, projections of the velocity vector onto the z, r, axes; k, kinetic 

energy of the fluctuation motion; /5, true volume concentration; kn, tcr, reduction coefficients of the normal and 

tangential velocity components in collision ( k  n < 0); v, D, viscosity and diffusion coefficients; L, mean free path 

of a particle between successive collisions; 6, particle size; R, radius of the channel; K, mass flow rate; p, pressure; 

F, drag force; m, particle mass. Subscripts and superscripts: g, p, gas, particles; 1, 2 . . . . .  i, j, l, fraction number 

(for a polydisperse matrial the subscript p is omitted); a, flow axis; w, wall, m, mean over the cross section; t, 

turbulent ana log; ,  ', averaged and fluctuation components. 
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